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Abstract. This paper discusses the maintenance optimization of a
railway track, based on the observation of two dependent randomly
increasing deterioration indicators. These two indicators are mod-
elled through a bivariate Gamma process constructed by trivariate
reduction. Empirical and maximum likelihood estimators are given
for the process parameters and tested on simulated data. The EM
algorithm is used to compute the maximum likelihood estimators. A
bivariate Gamma process is then fitted to real data of railway track
deterioration. Preventive maintenance scheduling is studied, ensuring
that the railway track keeps a good quality with a high probability.
The results are compared to those based on both indicators taken
separately, and also on one single indicator (usually taken for current
track maintenance). The results based on the joined information are
proved to be safer than the other ones, which shows the interest of
the bivariate model.

1 INTRODUCTION

This paper is concerned with the maintenance optimization of a railway
track, based on the observation of two dependent randomly increasing de-
terioration indicators. The railway track is considered as deteriorated when
any of these two indicators is beyond a given threshold. The point of the
paper is the study of preventive maintenance scheduling, which must ensure
that, given some observations provided by inspection, the railway track will
remain serviceable until the next maintenance action with a high probabil-
ity.

Track maintenance is a very expensive task to accomplish. Consequently,
it is essential to carry out maintenance actions in an optimal way, while tak-
ing into account many parameters: safety and comfort levels to be guaran-
teed, available logistic means, . . . The earlier the deterioration is detected,
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Longitudinal levelling (NL) Transversal levelling (NT)

Figure 1. Levelling defects

the easier it is to schedule maintenance actions. The objective is therefore
to develop a good prediction model.

Deterioration of track geometry is characterized by the development of
different representative parameters like, for example, the levelling of the
track. Figure 1 shows the defects that are measured by two of these param-
eters: the longitudinal (NL) and transversal (NT) levelling indicators.

At the SNCF (French National Railways), track inspections are pro-
grammed annually on a national level. The interval between two inspec-
tions on high speed tracks is currently about two weeks, the inspections are
carried out by a modified high-speed train. The collected time series are
transformed into indicators that sum up the state of the track over each km.
These new indicators are referred to as synthesized Mauzin data. Numeric
Mauzin data are available since the opening of the French high-speed lines.

Usually, the synthesized Mauzin indicator of the longitudinal levelling
(NL indicator) is used for maintenance issues: thresholds are fixed for this
indicator in order to obtain a classification of the track condition and to fix
dates for maintenance operations. For example, an intervention should be
scheduled before the NL indicator exceeds 0.9.

Based on expert judgements, a Gamma process has been used in [1]
both to model the evolution of the NL indicator and to plan maintenance
actions. As noted by J.M. van Noortwĳk in his recent survey [2], this kind of
process is widely used in reliability studies (see also [3], [4] and [5]). Various
domains of applications exist, such as civil engineering ([6], [7]), highway
engineering [8] or railway engineering [9]. Gamma processes are also used
in other domains, such as finance [10] or risk analysis [11]. All these papers
use univariate Gamma processes.

In the present case, as the two indicators NL and NT are dependent, the
use of a bivariate model is required. For this purpose, different processes
might be used, such as Bessel [12] or Lévy processes [13]. In this paper,
the approach of F.A. Buĳs, J.W. Hall, J.M. van Noortwĳk and P.B. Say-
ers in [6] is used: a specific Lévy process called bivariate Gamma process
is considered. This process is constructed from three independent univari-
ate Gamma processes by trivariate reduction, and has univariate Gamma
processes as marginal processes.

It is the first time that both NL and NT indicators are used conjointly to
predict the optimal dates of maintenance actions. The objective is to analyse
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the correlation between the two processes and to determine in what circum-
stances this bivariate process allows a better prediction of the maintenance
times than the current univariate one, based only on the NL indicator.

The paper is organized in the following way: bivariate Gamma processes
are introduced in Section 2. Empirical and maximum likelihood estimators
for their parameters are provided in Section 3. An EM algorithm is pro-
posed to carry out the maximum likelihood estimation. Both methods are
tested on simulated data. Section 4 is devoted to the study of preventive
maintenance planning and to the comparison of the results based on the
bivariate and on the univariate models. Finally, a bivariate Gamma process
is fitted to real data of railway track deterioration in Section 5 and it is
shown that the preventive maintenance scheduling based on the two avail-
able deterioration indicators are clearly safer than those based on a single
one, or on both taken separately.

2 THE BIVARIATE GAMMA PROCESS

Recall that an univariate (homogeneous) Gamma process (Yt)t≥0 with pa-
rameters (α, b) ∈ R∗2+ is a process with independent increments such that
Yt is Gamma distributed Γ (αt, b) with probability density function (p.d.f.)

fαt,b (x) = bαt

Γ (αt)
xαt−1e−bx1R+ (x) ,

E (Yt) = αt
b , Var(Yt) = αt

b2 for all t > 0, and Y0 ≡ 0 (see [2] for more details).
Following [6], a bivariate Gamma process

(
Xt

)
t≥0 =

(
X

(1)
t , X

(2)
t

)
t≥0 is

constructed by trivariate reduction: starting from three independent uni-
variate Gamma processes

(
Y

(i)
t

)
t≥0 with parameters (αi, 1) for i ∈ {1, 2, 3}

and from b1 > 0, b2 > 0, one defines:

X
(1)
t =

(
Y

(1)
t + Y

(3)
t

)
/b1, and X(2)

t =
(
Y

(2)
t + Y

(3)
t

)
/b2 for all t ≥ 0.

The process (Xt)t≥0 =
(
X

(1)
t , X

(2)
t

)
t≥0 is then a homogeneous process in

time with independent increments and it is a Lévy process. The marginal
processes of (Xt)t≥0 are univariate Gamma processes with respective pa-
rameters (ai, bi), where ai = αi + α3 for i = 1, 2.

For any bivariate Lévy process, the correlation coefficient ρXt of X(1)
t

and X(2)
t is known to be independent of t. For a bivariate Gamma process,

one obtains:
ρ = ρXt = α3√

a1a2

and
α1 = a1 − ρ

√
a1a2, α2 = a2 − ρ

√
a1a2, α3 = ρ

√
a1a2.

This entails
0 ≤ ρ ≤ ρmax = min (a1, a2)√

a1a2
. (1)
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See [14] section XI.3 for results on bivariate Gamma distributions.
This leads to two equivalent parameterizations of a bivariate Gamma

process: (α1, α2, α3, b1, b2) and (a1, a2, b1, b2, ρ).
With the parameterization (α1, α2, α3, b1, b2), the joint p.d.f. of Xt is:

gt (x1, x2)

= b1b2

∫ min(b1x1,b2x2)

0
fα1t,1 (b1x1 − x3) fα2t,1 (b2x2 − x3) fα3t,1 (x3) dx3,

= b1b2e
−b1x1−b2x2

Γ (α1t) Γ (α2t) Γ (α3t)
× · · ·

×
∫ min(b1x1,b2x2)

0
(b1x1 − x3)α1t−1 (b2x2 − x3)α2t−1

xα3t−1
3 e−x3 dx3. (2)

3 PARAMETER ESTIMATION

The data used for the parameter estimation are values of the process in-
crements for non overlapping time intervals on a single trajectory, and also
on different independent trajectories. The data can then be represented as(
∆tj ,∆X(1)

j (ω) ,∆X(2)
j (ω)

)
1≤j≤n where ∆tj = tj−sj stands for a time in-

crement and ∆X(i)
j = X

(i)
tj −X

(i)
sj for the associated i-th marginal increment

(i = 1, 2). For different j, the random vectors
(
∆X(1)

j ,∆X(2)
j

)
are indepen-

dent, but not identically distributed. The random variable ∆X(i)
j (i = 1, 2)

is Gamma distributed with parameters (ai ∆tj , bi). The joint p.d.f. of the
random vector

(
∆X(1)

j ,∆X(2)
j

)
is equal to g∆tj (., .), with ∆tj substituted

for t in (2). In the same way as for parameter estimation of a (univari-
ate) Gamma process, both empirical and maximum likelihood methods are
possible in the bivariate case.

3.1 Empirical estimators

Using E
(
∆X(i)

j

)
= ai

bi
∆tj and Var

(
∆X(i)

j

)
= ai

b2
i

∆tj for i = 1, 2 and for all
j, empirical estimators (â1, b̂1, â2, b̂2) of (a1, b1, a2, b2) are given in [7] and
[15], with:

âi

b̂i
=
∑n
j=1 ∆X(i)

j

tn
and âi

b̂2i
=

∑n
j=1
(
∆X(i)

j −
âi
b̂i

∆tj
)2

tn − 1
tn

∑n
j=1 (∆tj)2

, (3)

where we set tn =
∑n
j=1 ∆tj .

Using

Cov
(
∆X(1)

j ,∆X(2)
j

)
= ρ

√
a1a2

b1b2
∆tj ,
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a similar estimator ρ̂ may be given for ρ, with:

ρ̂

√
â1â2

b̂1b̂2
=

∑n
j=1
(
∆X(1)

j −
â1
b̂1

∆tj
)(

∆X(2)
j −

â2
b̂2

∆tj
)

tn − 1
tn

∑n
j=1 (∆tj)2 .

(4)

These estimators satisfy:

E
(
âi

b̂i

)
= ai
bi
, E

(
âi

b̂2i

)
= ai
b2i
, E

(
ρ̂

√
â1â2

b̂1b̂2

)
= ρ

√
a1a2

b1b2
.

If the time increments ∆tj are equal, these estimators cöıncides with the
usual empirical estimators in the case of i.i.d. random variables.

3.2 Maximum likelihood estimators
The parameter estimation of an univariate Gamma process is usually done
by maximizing the likelihood function (see e.g. [1]). With this method,
estimators āi and b̄i (i = 1, 2) of the marginal parameters are computed by
solving the equations:

āi

b̄i
=
∑n
j=1 ∆X(i)

j∑n
j=1 ∆tj

and

( n∑
j=1

∆tj
)
× ln

(
āi

∑n
j=1 ∆tj∑n

j=1 ∆X(i)
j

)
+

n∑
j=1

∆tj
[
ln
(
∆X(i)

j

)
− ψ (āi ∆tj)

]
= 0,

where
ψ (x) = Γ′ (x)

Γ (x)
, Γ (x) =

∫ ∞
0

e−uux−1du

for all x > 0 (ψ is the Digamma function).
In order to estimate all the parameters of the bivariate process

(α1, α2, α3, b1, b2) (which are here prefered to (a1, b1, a2, b2, ρ)), the likeli-
hood function associated with the data

(
∆tj ,∆X(1)

j ,∆X(2)
j

)
1≤j≤n can be

written as L(α1, α2, α3, b1, b2) =
∏n
j=1 g∆tj (∆X

(1)
j ,∆X(2)

j ). However, be-
cause of the expression of the function gt(., .), it seems complicated to op-
timize this likelihood function directly. An EM algorithm (see [16]) is then
used, considering

(
∆Y (3)

j = Y
(3)
tj − Y

(3)
sj

)
1≤j≤n as hidden data. This proce-

dure is still too complicated to estimate all the five parameters and does not
work numerically. So, the procedure is restricted to the three parameters
(α1, α2, α3). For the parameters b1, b2, the values

(
b̄1, b̄2

)
computed using

the maximum likelihood method for each univariate marginal process are
taken.

In order to simplify the expressions, the values of the data
(
∆tj , ∆X(1)

j ,
∆X(2)

j , ∆Y (3)
j

)
1≤j≤n are denoted by

(
tj , x

(1)
j , x

(2)
j , y

(3)
j

)
1≤j≤n, the associ-

ated n-dimensional random vectors by
(
X

(1)
, X

(2)
, Y

(3)) and the associated
n-dimensional data vectors by

(
x(1), x(2), y(3)).
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The joint p.d.f. of the random vector
(
X

(1)
t , X

(2)
t , Y

(3)
t

)
is equal to:

b1b2fα1t,1 (b1x1 − y3) fα2t,1 (b2x2 − y3) fα3t,1 (y3) =
b1b2e

−(b1x1+b2x2)

Γ (α1t) Γ (α2t) Γ (α3t)
(b1x1 − y3)α1t−1 (b2x2 − y3)α2t−1

yα3t−1
3 ey3 ,

with 0 ≤ y3 ≤ min (b1x1, b2x2), x1 > 0 and x2 > 0. Then, the log-likelihood
functionQ

(
x̄(1), x̄(2), ȳ(3)) associated with the complete data

(
x(1), x(2), y(3))

is derived:

Q
(
x̄(1), x̄(2), ȳ(3)) = n (ln (b1) + ln (b2))− · · ·

n∑
j=1

(ln Γ (α1tj) + ln Γ (α2tj) + ln Γ (α3tj))− b1
n∑
j=1

x
(1)
j − · · ·

b2

n∑
j=1

x
(2)
j +

n∑
j=1

{
(α1tj − 1) ln

(
b1x

(1)
j − y

(3)
j

)
+ · · ·

(α2tj − 1) ln
(
b2x

(2)
j − y

(3)
j

)
+ (α3tj − 1) ln

(
y
(3)
j

)
+ y

(3)
j

}
.

For the EM algorithm, the conditional log-likelihood of the complete data
given the observed data is needed:

E
(
Q
(
X̄(1), X̄(2), Ȳ (3))|X̄(1) = x̄(1), X̄(2) = x̄(2))

= n (ln (b1) + ln (b2))− b1
n∑
j=1

x
(1)
j − b2

n∑
j=1

x
(2)
j + · · ·

n∑
j=1

{
((α1tj − 1) E

(
ln
(
b1x

(1)
j −∆Y (3)

j

)
|∆X(1)

j = x
(1)
j ,∆X(2)

j = x
(2)
j

)
+ (α2tj − 1) E

(
ln
(
b2x

(2)
j −∆Y (3)

j

)
|∆X(1)

j = x
(1)
j ,∆X(2)

j = x
(2)
j

)
+ (α3tj − 1) E

(
ln
(
∆Y (3)

j

)
|∆X(1)

j = x
(1)
j ,∆X(2)

j = x
(2)
j

)
+E
(
Y

(3)
j |∆X

(1)
j = x

(1)
j ,∆X(2)

j = x
(2)
j

)}
−

n∑
j=1

(ln Γ (α1tj) + ln Γ (α2tj) + ln Γ (α3tj)) . (5)

Finally, the conditional density function of Y (3)
t given X(1)

t = x1, X
(2)
t = x2

is equal to:

fα1t,1 (b1x1 − y3) fα2t,1 (b2x2 − y3) fα3t,1 (y3)∫min(b1x1,b2x2)
0 fα1t,1 (b1x1 − x3) fα2t,1 (b2x2 − x3) fα3t,1 (x3) dx3

= (b1x1 − y3)α1t−1 (b2x2 − y3)α2t−1
yα3t−1
3 ey3∫min(b1x1,b2x2)

0 (b1x1 − x3)α1t−1 (b2x2 − x3)α2t−1
xα3t−1

3 ex3 dx3
,
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where 0 ≤ y3 ≤ min (b1x1, b2x2), x1 > 0 and x2 > 0.

Step k of the EM algorithm consists of computing new parameter val-
ues (α(k+1)

1 , α
(k+1)
2 , α

(k+1)
3 ) given the current values (α(k)

1 , α
(k)
2 , α

(k)
3 ) in two

stages:

• stage 1: compute the conditional expectations in (5) using the current
set (α(k)

1 , α
(k)
2 , α

(k)
3 ) of parameters, with:

f1

(
j, α

k)
1 , α

(k)
2 , α

(k)
3

)
= E

(
ln
(
b̄1x̄

(1)
j − Ȳ

(3)
j

)
|X̄(1) = x̄

(1)
j , X̄(2) = x̄

(2)
j

)
,

f2

(
j, α

k)
1 , α

(k)
2 , α

(k)
3

)
= E

(
ln
(
b̄2x̄

(2)
j − Ȳ

(3)
j

)
|X̄(1) = x̄

(1)
j , X̄(2) = x̄

(2)
j

)
,

f3

(
j, α

k)
1 , α

(k)
2 , α

(k)
3

)
= E

(
ln
(
Ȳ

(3)
j

)
|X̄(1) = x̄

(1)
j , X̄(2) = x̄

(2)
j

)
,

h
(
α
k)
1 , α

(k)
2 , α

(k)
3

)
=

n∑
j=1

E
(
Ȳ

(3)
j |X̄

(1) = x̄
(1)
j , X̄(2) = x̄

(2)
j

)
.

• stage 2: take for (α(k+1)
1 , α

(k+1)
2 , α

(k+1)
3 ) the values of (α1, α2, α3) that

maximize (5), which here becomes:

g
(
α1, α2, α3, α

(k)
1 , α

(k)
2 , α

(k)
3
)

= n
(
ln
(
b̄1
)

+ ln
(
b̄2
))
− b̄1

n∑
j=1

x
(1)
j − b̄2

n∑
j=1

x
(2)
j

+
n∑
j=1

{
(α1tj − 1) f1

(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)

+ (α2tj − 1) f2
(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)

+ (α3tj − 1) f3
(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)}

−
n∑
j=1

(ln Γ (α1tj) + ln Γ (α2tj) + ln Γ (α3tj)) + h
(
α

(k)
1 , α

(k)
2 , α

(k)
3
)
.

The maximization in stage 2 is done by solving the following equation
with respect to αi:

∂g
(
α1, α2, α3, α

(k)
1 , α

(k)
2 , α

(k)
3
)

∂αi
=

n∑
j=1

tjfi
(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)
−

n∑
j=1

tjψ (αitj) = 0 (6)

for i = 1, 2, 3.
In the same way, it is possible to take the values

(
ā1, ā2, b̄1, b̄2

)
obtained

by maximum likelihood estimation on the univariate marginal processes
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for (a1, a2, b1, b2) and to estimate only the last parameter α3 by the EM
algorithm. In that case, α(k+1)

3 is the solution of the equation:

n∑
j=1

tj

{
f3
(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)
− f1

(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)
− · · ·

f2
(
j, α

(k)
1 , α

(k)
2 , α

(k)
3
)}
−

n∑
j=1

tj

{
ψ (α3tj)− ψ ((ā1 − α3)tj)− · · ·

ψ ((ā2 − α3)tj)
}

= 0.

3.3 Tests on simulated data
500 time increments (tj)1≤j≤500 are randomly chosen similar to the data
of track deterioration (the proposed methods will be used on these data in
Section 5). Then, 500 values of a bivariate Gamma process are simulated
corresponding to these time increments and with parameters a1 = 0.33, a2 =
0.035, b1 = 13.5, b2 = 20 and ρ = 0.5296. These parameter values have the
same order of magnitude than those observed for track deterioration studied
in Section 5. Three series of 500 data points are simulated independently.
Results of parameters estimation are given in Tables 1, 2 and 3, each corre-
sponding to a series of data. In these tables, one can find: the true values
in column 2, the empirical estimators in column 3, the univariate maxi-
mum likelihood estimators of a1, b1, a2, b2 in column 4, the EM estimator
of the three parameters a1, a2, ρ in column 5, using the parameters b̄1, b̄2
previously estimated by the univariate maximum likelihood method (from
column 4), and the second EM estimator of the parameter ρ in column 6,
using the estimated parameters ā1, b̄1, ā2, b̄2 from column 4.

The initial values for the EM algorithm are different for the three tables.
For Table 1, the EM algorithm has been initiated with α

(0)
1 = α

(0)
2 = 0.05

and α
(0)
3 = 0.15 ( a(0)

1 = a
(0)
2 = 0.1 and ρ(0) = 0.75). For Tables 2 and 3,

α
(0)
1 = α

(0)
2 = α

(0)
3 = 0.01, and α

(0)
1 = 0.02, α(0)

2 = 0.01, α(0)
3 = 0.05 were

respectively taken.
Looking at the development of a(k)

i and ρ(k) along the different steps of
the EM algorithm, one may note that the parameters a(k)

i stabilize more
quickly than the parameter ρ(k) (about 5 iterations for a(k)

i and between 20
and 30 iterations for ρ(k)).

The conclusion of this section is that estimation of parameters (ai, bi) by
empirical and maximum likelihood methods give satisfactory results, with a
slight preference to maximum likelihood. Empirical estimators of ρ have a
good order of magnitude, but are sometimes not precise enough. Estimators
of ρ obtained by EM are always reasonable. The estimation of the three
parameters (α1, α2, α3) (column EM1) seems to give slightly better results
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True Empirical Univariate EM algorithm
values estimators max likelihood EM1 EM2

a1 0.0330 0.0348 0.0342 0.0347 −
b1 13.5 14.38 14.14 − −
a2 0.0350 0.0362 0.0357 0.0354 −
b2 20 20.58 20.25 − −
ρ 0.5296 0.5637 − 0.5231 0.5214

Table 1. Results for the first series of data.

True Empirical Univariate EM algorithm
values estimators max likelihood EM1 EM2

a1 0.0330 0.0315 0.0326 0.0328 −
b1 13.5 12.80 13.16 − −
a2 0.0350 0.0357 0.0361 0.0365 −
b2 20 20.25 20.54 − −
ρ 0.5296 0.5750 − 0.5272 0.5257

Table 2. Results for the second series of data.

than those of the estimation of the parameter α3 alone (column EM2). The
results obtained by the EM algorithm for parameters ai (column EM1) are
good, with a quality quite similar to those obtained by univariate maximum
likelihood estimation. Finally, the EM algorithm does not seem sensitive to
initial values, at least if the initial value of α3 is not too small.

4 PREVENTIVE MAINTENANCE PLANNING

A bivariate Gamma process Xt =
(
X

(1)
t , X

(2)
t

)
is now used to model the de-

velopment of two deterioration indicators of a system. We assume that there
exist (corrective) thresholds si (i = 1, 2) for each indicator, above which the
system is considered to be deteriorated. The system is not continuously
monitored but only inspected at time intervals, with a perfect observation
of the deterioration level. When one (or both) indicator(s) is observed to be
beyond its corrective threshold, an instantaneous maintenance action is un-
dertaken, which brings the system back to a better state, not necessarily as
good as new. When both indicators are observed to be below their correc-
tive thresholds or after a maintenance action, a new inspection is planned.
The time to next inspection (τ) must ensure with a high probability that
neither X(1)

t nor X(2)
t go beyond their corrective thresholds si before the

next inspection.
Let (x1, x2) ∈ [0, s1[×[0, s2[ be the observed deterioration level at some

inspection time, say at time t = 0 with no restriction. (If x1 ≥ s1 or x2 ≥ s2,
a maintenance action is immediately undertaken).

For i = 1, 2, let T (i) be the hitting time of the threshold si for the
marginal process

(
X

(i)
t

)
t≥0, with T (i) = inf

(
t > 0 : X(i)

t ≥ si
)
. Also, let

ε ∈]0, 1[ be some confidence level.
Different points of view are possible: in the first case, τ (i), i = 1, 2 is the

9



“book” — 2009/9/22 — 17:52 — page 10 — #10

Mercier, Meier-Hirmer & Roussignol

True Empirical Univariate EM algorithm
values estimators max likelihood EM1 EM2

a1 0.0330 0.0297 0.0340 0.0343 −
b1 13.5 11.71 13.43 − −
a2 0.0350 0.0340 0.0385 0.0389 −
b2 20 18.79 21.28 − −
ρ 0.5296 0.5645 − 0.5060 0.5027

Table 3. Results for the third series of data.

a2 b2 x1 x2 ρmax τ(1) τ(2) τU τB (ρmax)
case 1 0.03 30 0.2 0.2 1 341.12 558.31 341.12 341.12
case 2 0.04 20 0.4 0.2 0.866 237.33 255.84 237.33 229.91

Table 4. Two different combinations of values for a2, b2, x1 and x2, and the
resulting ρmax, τ (1), τ (2), τU and τB (ρmax).

time to next inspection associated to the marginal process
(
X

(i)
t

)
t≥0, with

τ (i) = max
(
τ ≥ 0 such that Pxi

(
T (i) > τ

)
≥ 1− ε

)
,

where Pxi stands for the conditional probability given X(i)
0 = xi. One then

gets: Pxi
(
T (i) > τ (i)) = 1− ε.

Without a bivariate model, a natural time to next inspection for the
system is:

τU = max
(
τ ≥ 0 s.t. Px1

(
T (1) > τ

)
≥ 1− ε and Px2

(
T (2) > τ

)
≥ 1− ε

)
,

= min
(
τ (1), τ (2)).

Using a bivariate Gamma process, the time to next inspection becomes:

τB = max
(
τ ≥ 0 such that P(x1,x2)

(
T (1) > τ, T (2) > τ

)
≥ 1− ε

)
.

The goal is to compare τU and τB , and more generally, to understand the
influence of the dependence between both components on τB . Using

Pxi
(
T (i) > t

)
= Pxi

(
X

(i)
t < si

)
= P0

(
X

(i)
t < si − xi

)
= Fait,bi (si − xi) ,

where Fait,bi (x) is the cumulative distribution function of the distribution
Γ (ait, bi), the real τ (i) is computed by solving the equation Faiτ(i),bi (si − xi) =
1− ε, for i = 1, 2, and τU = min

(
τ (1), τ (2)) is derived. Similarly,

P(x1,x2)
(
T (1) > t, T (2) > t

)
= P(0,0)

(
X

(1)
t < s1 − x1, X

(2)
t < s2 − x2

)
,

=
∫ s1−x1

0

∫ s2−x2

0
gt (y1, y2) dy1 dy2,

≡ Gt (s1 − x1, s2 − x2) ,

where gt is the p.d.f. of Xt (see (2)). This provides τB by solving
GτB (s1 −x1, s2 − x2) = 1− ε.

10
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Figure 2. τB with respect to ρ and τU , for the four cases of Table 4

With a1 = 0.03, b1 = 20, ε = 0.5 and s1 = s2 = 1, and different values
for a2, b2, x1 and x2, Table 4 gives the corresponding values for ρmax (as
provided by (1)) and the resulting τ (1), τ (2), τU and τB (ρmax). The value
of τB is plotted with respect to ρ in the Figures 2 for the two different cases
of Table 4, and the corresponding value of τU is indicated.

In both figures, one can observe that with all other parameters fixed, the
bivariate preventive time τB is an increasing function of ρ, such that τB ≤
τU . Also, both τB = τU and τB < τU are possible. The theoretical proof of
such results is not provided here because of the reduced size of the present
paper, but will be provided in a forthcomming one.

In conclusion to this section, one can see that using a bivariate model
instead of two separate univariate models generally shortens the time to next
inspection (τB ≤ τU ). This means that taking into account the dependence
between both components provides safer results. Also, the optimal time to
next inspection is increasing with dependence (τB increases with ρ), which
implies that the error made when considering separate models (τU ) is all the
more important the less the components are dependent. This also implies
that the safest attitude, in case of an unkown correlation, is to consider
both components as independent and chose τ = τ⊥, where

τ⊥ = max
(
τ ≥ 0 such that Px1

(
T (1) > τ

)
Px2

(
T (2) > τ

)
≥ 1− ε

)
.

5 APPLICATION TO TRACK MAINTENANCE

A bivariate Gamma process is now used to model the evolution of the two
track indicators NL and NT (see the Introduction) and times to next in-
spection are computed, as described in the previous section.

Using univariate maximum likelihood and EM methods on data corre-
sponding to the Paris-Lyon high-speed line provide the estimations â1 =
0.0355, b̂1 = 19.19, â2 = 0.0387, b̂2 = 29.72, ρ̂ = 0.5262. Usual thresholds are

11
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Figure 3. τ (1), τ (2) and τB with respect to x2 with x1 = 0.4

s1 = 0.9 for NL and s2 = 0.75 for NT. With these values, τ (1), τ (2) and τB
are plotted in Figure 3 with respect of x2 when x1 is fixed (x1 = 0.4). In
that case τ (1) = 150.

This figure shows that taking into account the single information x1 =
0.4 may lead to too late maintenance actions. As an example, if x2 =
0.4, one has τB = 134.7 (and τ (2) = 152.9). The preventive maintenance
action based only on NL is consequently scheduled 15 days too lately. If
x2 = 0.5, one obtains τB = 95.9 (τ (2) = 97.5) and the maintenance action is
undertaken 54 days too late. If x2 = 0.6, one obtains τB = 47.1 (τ (2)= 47.2)
and this is 103 days too late.

Concluding this section, one can finally observe that if x1 is not too close
to x2, the value τU = min

(
τ (1), τ (2)) seams reasonable for maintenance

scheduling (see Figure 3), contrary to the currently used τ (1), which may
entail large delay in its planning (more than 100 days in our example). If x1
is close to x2, the values of τU and τB have the same order of magnitude,
however with τU > τB , so that the preventive maintenance action is again
planned too lately (15 days in the example).

6 CONCLUSION

A bivariate Gamma process has been used to model the development of two
deterioration indicators. Different estimation methods have been proposed
for the parameters and tested on simulated data. Based on these tests, the
best estimators seem provided by univariate likelihood maximization for the
marginal parameters and by an EM algorithm for the correlation coefficient.

Preventive maintenance scheduling has then been studied for a system
that deteriorates according to a bivariate Gamma process. In particular,

12
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it has been shown that, given an observed bivariate deterioration level, the
optimal time to maintenance is increasing with dependence. It has been
proven that the optimal time to maintenance is always shorter when taking
into account the dependence between the two deterioration indicators than
when considering them separately (or only considering one of them).

Finally, a bivariate Gamma process has been used to study a real track
maintenance problem. The application shows that when both observed
deterioration indicators are close to each other, the bivariate process gives
safer results for maintenance scheduling than both univariate processes con-
sidered separately or one single univariate process, with the same order of
magnitude in each case however. When the observed deterioration indica-
tors are clearly different, considering one single univariate process as it is
done in current track maintenance, may lead to clearly unadaquate results.
This application to real data of railway track deterioration hence shows
the interest of a bivariate model for a correct definition of a maintenance
strategy.
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